Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bioresour Technol ; 372: 128625, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2287473

ABSTRACT

Given the potential of machine learning algorithms in revolutionizing the bioengineering field, this paper examined and summarized the literature related to artificial intelligence (AI) in the bioprocessing field. Natural language processing (NLP) was employed to explore the direction of the research domain. All the papers from 2013 to 2022 with specific keywords of bioprocessing using AI were extracted from Scopus and grouped into two five-year periods of 2013-to-2017 and 2018-to-2022, where the past and recent research directions were compared. Based on this procedure, selected sample papers from recent five years were subjected to further review and analysis. The result shows that 50% of the publications in the past five-year focused on topics related to hybrid models, ANN, biopharmaceutical manufacturing, and biorefinery. The summarization and analysis of the outcome indicated that implementing AI could improve the design and process engineering strategies in bioprocessing fields.


Subject(s)
Artificial Intelligence , Big Data , Machine Learning , Algorithms , Natural Language Processing
2.
Front Public Health ; 10: 1022055, 2022.
Article in English | MEDLINE | ID: covidwho-2237021

ABSTRACT

The coronavirus disease (COVID-19) outbreak has turned the world upside down bringing about a massive impact on society due to enforced measures such as the curtailment of personal travel and limitations on economic activities. The global pandemic resulted in numerous people spending their time at home, working, and learning from home hence exposing them to air contaminants of outdoor and indoor origins. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which spreads by airborne transmission. The viruses found indoors are linked to the building's ventilation system quality. The ventilation flow in an indoor environment controls the movement and advection of any aerosols, pollutants, and Carbon Dioxide (CO2) created by indoor sources/occupants; the quantity of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique used to track a person's COVID-19 risk, but high or low CO2 levels do not necessarily mean that the COVID-19 virus is present in the air. CO2 monitors, in short, can help inform an individual whether they are breathing in clean air. In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring systems use various sensors that are available in the marketplace. This work presents a review of scientific articles that influence intelligent monitoring development and indoor environmental quality management system. The paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266 microcontroller support the development of low-cost indoor air monitoring at learning facilities.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Carbon Dioxide , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Respiratory Aerosols and Droplets
3.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2208088

ABSTRACT

The coronavirus disease (COVID-19) outbreak has turned the world upside down bringing about a massive impact on society due to enforced measures such as the curtailment of personal travel and limitations on economic activities. The global pandemic resulted in numerous people spending their time at home, working, and learning from home hence exposing them to air contaminants of outdoor and indoor origins. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which spreads by airborne transmission. The viruses found indoors are linked to the building's ventilation system quality. The ventilation flow in an indoor environment controls the movement and advection of any aerosols, pollutants, and Carbon Dioxide (CO2) created by indoor sources/occupants;the quantity of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique used to track a person's COVID-19 risk, but high or low CO2 levels do not necessarily mean that the COVID-19 virus is present in the air. CO2 monitors, in short, can help inform an individual whether they are breathing in clean air. In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring systems use various sensors that are available in the marketplace. This work presents a review of scientific articles that influence intelligent monitoring development and indoor environmental quality management system. The paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266 microcontroller support the development of low-cost indoor air monitoring at learning facilities.

4.
Int J Environ Res Public Health ; 19(11)2022 05 24.
Article in English | MEDLINE | ID: covidwho-1903381

ABSTRACT

The COVID-19 pandemic raises awareness of how the fatal spreading of infectious disease impacts economic, political, and cultural sectors, which causes social implications. Across the world, strategies aimed at quickly recognizing risk factors have also helped shape public health guidelines and direct resources; however, they are challenging to analyze and predict since those events still happen. This paper intends to invesitgate the association between air pollutants and COVID-19 confirmed cases using Deep Learning. We used Delhi, India, for daily confirmed cases and air pollutant data for the dataset. We used LSTM deep learning for training the combination of COVID-19 Confirmed Case and AQI parameters over the four different lag times of 1, 3, 7, and 14 days. The finding indicates that CO is the most excellent model compared with the others, having on average, 13 RMSE values. This was followed by pressure at 15, PM2.5 at 20, NO2 at 20, and O3 at 22 error rates.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Deep Learning , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Humans , Pandemics , Particulate Matter/analysis
5.
International Journal of Environmental Research and Public Health ; 19(11):6373, 2022.
Article in English | MDPI | ID: covidwho-1857816

ABSTRACT

The COVID-19 pandemic raises awareness of how the fatal spreading of infectious disease impacts economic, political, and cultural sectors, which causes social implications. Across the world, strategies aimed at quickly recognizing risk factors have also helped shape public health guidelines and direct resources;however, they are challenging to analyze and predict since those events still happen. This paper intends to invesitgate the association between air pollutants and COVID-19 confirmed cases using Deep Learning. We used Delhi, India, for daily confirmed cases and air pollutant data for the dataset. We used LSTM deep learning for training the combination of COVID-19 Confirmed Case and AQI parameters over the four different lag times of 1, 3, 7, and 14 days. The finding indicates that CO is the most excellent model compared with the others, having on average, 13 RMSE values. This was followed by pressure at 15, PM2.5 at 20, NO2 at 20, and O3 at 22 error rates.

SELECTION OF CITATIONS
SEARCH DETAIL